User Manual

RIGOL

Publication number DS5-040501 May 2004

DS-5000 Series Digital Storage Oscilloscope

DS 5000CA, DS 5000C, DS 5000MA, DS 5000M

© Copyright Rigol Electronic Co. Ltd. 2004 All Rights Reserved

- Copyright © RIGOL ELECTRONIC Co. Ltd. 2003 All Rights Reserved.
- Rigol products are covered by P.R. China and foreign patents, issued and pending.
- Information in this publication supersedes that in all previously published material.
- Specification and price change privileges reserved.

NOTE: RIGOL is registered trademark of RIGOL ELECTRONIC Co. Ltd.

General Safety Summary

Review the following safety precautions to avoid injury and prevent damage to this product on any products connected to it. To avoid potential hazards use this product only as specified

Only qualified personnel should perform service procedures

To Avoid Fire or Personal Injury

Use proper power cord use only the power cord specified for this product and certified for the country of use.

Connect and Disconnect Property. Do not connect or disconnect probes or test leads while they are connected to a voltage source

Ground the product this product is grounded through the grounding conductor of the power cord. To avoid electric shock the grounding conductor must be connected to earth ground. Before making connections to the input or output terminals of the product ensure that the product is properly grounded.

Connect the probe properly. The probe ground lead is at ground potential. Do not connect the ground lead to an elevated voltage.

Observe All Terminal Ratings. To avoid fire or shock hazard, observe all rating and marking on the product. Consult the product manual for further ratings information before making connections to the product.

Do not operate without Covers. Do not operate this product with covers or panels removed.

Use Proper Fuse. Use only the fuse type and rating specified for this product.

Avoid Exposed Circuitry. Do not touch exposed connections and component when power is present.

Do not operate with suspected failures. If you suspect there is damage to this products, have it inspected

Provide Proper Ventilation. Refer to the manual's installation instructions for details on installing the product so it has proper ventilation.

Do not operate in wet/damp conditions

Do not operate in an explosive atmosphere Keep product surfaces clean and dry

Safety Terms and Symbols

Terms in This Manual. These terms may appear in this manual:

WARNING: Warning statements identify conditions or practices that could result in injury or loss of life.

CAUTION: Caution statements identify conditions or practices that could result in damage to this product or other property.

Terms on the Product. These terms may appear on the product :

DANGER indicates an injury hazard immediately accessible as you read the marking.

WARNING indicates an injury hazard not immediately accessible as you read the marking.

CAUTION indicates a hazard to property including the product .

Symbols on the Product. These symbol s may appear on the product :

DANGER High Voltage

ATTENTION Refer to Manual

Protective Conductor Terminal

Frame or Chassis Terminal

Earth Terminal

General-Purpose Oscilloscopes

The **RIGOL DS5000-Series** Digital Storage Oscilloscopes offer exceptional waveform viewing and measurements in a small, lightweight package. The DS5000 series are suited for production, field service, research and design labs, applications involving digital circuit test and troubleshooting, and education applications. Each of these oscilloscopes gives you:

- Dual Channel, Bandwidth:
 - 200-MHz (DS5202CA)
 - 150-MHz (DS5152CA, DS5152C, DS5152MA, DS5152M)
 - 100-MHz (DS5102CA, DS5102C, DS5102MA, DS5102M)
 - 60-MHz (DS5062CA, DS5062C, DS5062MA, DS5062M)
 - 40-MHz (DS5042M)
 - 25-MHz (DS5022M)
- 4K/Channel Memory Depth
- Mono/Color LCD Display 320*240 resolution
- Real-time Sample Rate 1GSa/s (DS5000CA series, DS5000MAseries) 250MSa/s (DS5000C series, DS5000M series)
- 50GSa/s equivalent Sample Rate
- Automatic setup of the front panel
- 20 Automatic measurements
- Auto Calibration
- Storage 10 Waveforms, 10 setups
- Delayed Scan Function
- XY-PLOT
- Built-in FFT function, Frequency Counter
- Digital filter, includes LPF, HPF, BPF, BRF
- 50 Ω /1M Ω Input Impedance select.(Certain models ONLY, see related section)
- Pass/Fail Function
- Trigger on Edger, Video, Pulse width
- Add, Subtract, Multiply and Divide Mathematic Functions
- Multiple Language User Interface

User can get system functions through optional extension modules such as EM5-COM (RS232, GPIB communications modules) , EM5-CM (RS232 and GPIB communications, Pass/Fail output) , EM5-P/F (Pass/Fail Output)

Accessories already included in the package

- Two 1.5 meter, 1:1 and 10: 1 probes
- Power cable for country of destination
- User Manual
- Warranty and Registration Form

Options available

- EM5-CM Communications function (RS232 and GPIB) Pass/Fail Output Function
- EM5-COM Communications modules(RS232、GPIB)
- EM5-P/F Pass/Fail Output Function
- Accessories Bag: PA-5000

Content

CHAPTER 4: PROMPT MESSAGES & TROUBLESHOOTING	1-1
<i>Prompting messages</i>	1-1 1-3
CHAPTER 5: SUPPORT & SERVICE5	<u>5-1</u>
CHAPTER 6: REFERENCE 6	5-1
Appendix A: Specifications	5-1 5-6 5-7
Index	i

Chapter 1 : The Oscilloscope at a glance

This chapter covers the following topics:

- The front panel and user interface
- To inspect the instrument
- To take a functional check
- To compensate probes
- To display a signal automatically
- To set up the vertical window
- To set up the horizontal system
- To trigger the oscilloscope

The front panel and the user interface

One of the first things you will want to do with your new oscilloscope is to become acquainted with its front panel. Therefore, we have written the exercises in this chapter to familiarize you with some of its controls.

The front panel has knobs and keys. The knobs are used most often and are similar to the knobs on other oscilloscopes. The keys bring up soft button menus on the display that allow you access to many of the oscilloscope features and menus associated with channels, math, and reference or instant action features.

Figuer1-1

DS 5000-Series Oscilloscope's Front Panel

DS5000 series oscilloscopes provide an easy-to-use front panel, the definitions of the buttons and the knobs are listed as follows:

Menu buttons: Associate with MEASURE, CURSOR, ACQUIRE, DISPLAY, STORAGE, and UTILITY menus.

Vertical buttons: Associate with CH1, CH2, MATH and REF menus, the OFF button can set waveform or menu which currently active off.

Horizontal buttons: Associate with horizontal MENU.

Trigger buttons: Associate with trigger MENU, instant action to set 50% trigger level and FORCE trigger.

Action buttons: Include Instant action buttons for AUTO and RUN/STOP. Function buttons: Five gray buttons from top to bottom on the right to the LCD screen, which set choice of operation in the currently active menu.

Knobs: For the adjustment of vertical or horizontal POSITION, SCALE, and trigger LEVEL.

Figure 1-2 Front Panel Controls

Throughout this book, a box around the name of the key denotes the front-panel keys, and the name with a drop shadow denotes the soft buttons. For example, CH1 is a front-panel key labeled **CH1** under the vertical portion of the front panel, and Coupling is a soft button. The word **Coupling** is on the top of the menu on the screen, directly on the left of an unlabeled soft button (which is also gray).

Figure 1-3 User Interface

To inspect the instrument

After you get a new DS5000 series oscilloscope, please inspect the instrument according to the following steps:

1. Inspect the shipping container for damage.

Keep a damaged shipping container or cushioning material until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically.

2. Check the accessories.

Accessories supplied with the instrument are listed in "Accessories available" in the front of this manual.

If the contents are incomplete or damaged notify your RIGOL sales office.

3. Inspect the instrument.

If there is mechanical damage or defect, or if the instrument does not operate properly or pass performance tests, notify your RIGOL sales office.

If the shipping container is damaged, or the cushioning materials show signs of stress, notify the carrier as well as your RIGOL sales office. Keep the shipping materials for the carrier's inspection. The RIGOL office will arrange for repair or replacement at RIGOL's option without waiting for claim settlement.

To take a functional check

Perform this quick functional check to verify that your instrument is operating correctly.

1. Turn on the instrument.

Use only power cords designed for your oscilloscope. Use a power source that delivers 100 to 240 VAC_{RMS}, 50Hz. Turn on the instruments, wait until the display shows that all self-tests passed. Push the $\boxed{\text{STORAGE}}$ button, select $\boxed{\text{Setups}}$ in the top menu box and push the $\boxed{\text{Factory}}$ menu box.

WARNNING:

To avoid electric shock, be sure the oscilloscope is properly grounded.

2. Input a signal to a channel of the oscilloscope

 Set the switch to 10X on the probe and connect the probe to channel 1 on the oscilloscope. To do this, align the slot in the probe connector with the key on the CH 1 BNC, push to connect, and twist to the right to lock the probe in place. Attach the probe tip and reference lead to the PROBE COMP connector.

CAUTION: To avoid damage the instrument, always ensure the input voltage at BNC does not exceed the maximum voltage (400Vpp when 1M Ω input impedance is selected, or 5Vrms when 50 Ω input impedance is selected.)

Figure 1-6

② Set the probe attenuation to 10X. To do this, push $CH1 \rightarrow Probe \rightarrow 10X$.

- ③ Push the AUTO button. Within a few seconds, you could see a square wave in the display (approximately 3 V at 1 kHz peak- to- peak).
- ④ Push the OFF button to turn off channel 1, push the CH 2 button to turn on channel 2, repeat steps 2 and 3.

To compensate probes

Perform this adjustment to match your probe to the input channel. This should be done whenever you attach a probe for the first time to any input channel.

- Set the Probe menu attenuation to 10X. Set the switch to 10X on the probe and 1. connect the probe to channel 1 on the oscilloscope. If you use the probe hook-tip, ensure a proper connection by firmly inserting the tip onto the probe. Attach the probe tip to the PROBE COMP connector and the reference lead to the PROBE COMP Ground connector, turn on channel 1, and then press AUTO.
- 2. Check the shape of the displayed waveform.

Figure 1-8

Under Compensated

3. If necessary, use a nonmetallic tool to adjust the trimmer capacitor on the probe for the flattest square wave possible as displayed on the oscilloscope.

Figure 1-9

4. Repeat as necessary.

WARNNING: To avoid electric shock while using the probe, be sure the perfection of the insulated cable, and do not touch the metallic portions of the probe head while it is connected with a voltage source.

To display a signal automatically

The oscilloscope has an Auto feature that automatically sets up the oscilloscope to best display the input signal. Using Auto requires signals with a frequency greater than or equal to 50 Hz and a duty cycle greater than 1%.

When you press the AUTO button, the oscilloscope turns on and scales all channels that have signals applied, and it selects a time base range based on the trigger source. The trigger source selected is the lowest numbered input that has a signal applied.

The DS5000 series are two-channel oscilloscopes with an external trigger input. In this exercise you connect a signal to the channel 1 input.

1. Connect a signal to the oscilloscope.

2. Press AUTO.

When you press the AUTO button, the oscilloscope changes the front-panel setup to display the signal. It automatically adjusts the vertical and horizontal scaling, as well as the trigger coupling, type, position, slope, level, and mode settings.

To set up the vertical window

Figure 1-10 shows the channels, math, ref, off buttons and vertical position, scale knobs. The following exercise guides you through the vertical buttons, knobs, and status bar. It will help you be familiar with the setting of the vertical parameters.

1 Center the signal on the display with the **POSITION** knob.

The <u>POSITION</u> knob moves the signal vertically, and it is calibrated. Notice that as you turn the <u>POSITION</u> knob, a voltage value is displayed for a short time indicating how far the ground reference is located from the center of the screen. Also notice that the ground symbol on the left side of the display moves in conjunction with the <u>POSITION</u> knob.

Measurement hints

If the channel is DC coupled, you can quickly measure the DC component of the signal by simply noting its distance from the ground symbol.

If the channel is AC coupled, the DC component of the signal is blocked, allowing you to use greater sensitivity to display the AC component of the signal.

2 Change the vertical setup and notice that each change affects the status bar differently.

You can quickly determine the vertical setup from the status bar in the display.

- Change the vertical sensitivity with the SCALE knob and notice that it causes the status bar to change.
- Press CH1.

A soft button menu appears on the display, and the channel turns on (or remains on if it was already turned on).

- Toggle each of the soft buttons and notice which button cause the status bar to change. Channels 1 and 2 have a venire soft button that allows the SCALE knob to change the vertical step size in smaller increments. To press Volts/Div soft button, you can change the step size into **Fine** or **Coarse** status.
- Press OFF button to turn the channel off.

NOTE: OFF button can also shut the on-screen menu off.

Vernier Shortcut key

You can set the Coarse/Fine vertical control not only on the Volts/Div item in the CH1 or CH2 menus, but also by pressing the vertical SCALE knob.

To set up the horizontal system

Figure 1-11 shows the menu button, position and scale knobs of horizontal system. The following exercise guides you through these buttons, knobs, and status bar.

1. Turn the SCALE knob and notice the change it makes to the status bar.

The horizontal SCALE knob changes the sweep speed in a 1-2-5 step sequence, and the value is displayed in the status bar. The time base ranges of the DS5000 series are listed as follows.

From 1 ns/div* to 50 s/div and they can reach 10ps/div* in Delayed Scan mode.

* **NOTE:** This characteristic varies by different model.

Delayed Scan Shortcut key

To press the <u>SCALE</u> knob in the horizontal control area on the front-panel is another way to enter or exit Delayed Scan mode and it is equal to the following menu operations, $MENU \rightarrow Delayed$.

2 The horizontal **POSITION** knob adjust horizontally signal on waveform window

3. Press the MENU key to display the TIME menu.

In this menu, you can enter or exit the Delayed Scan mode, set the display to Y-T or X-Y format, and set the horizontal **POSITION** knob to **Trig-Offset** or **Holdoff** mode.

Horizontal position control

Trig-Offset: In this setting, the trigger's position will be changed horizontally when you turn the POSITION knob.

Holdoff: Adjust Holdoff time when you turn the POSITION knob.

To trigger the oscilloscope

Figure 1-12 is the trigger control area on the front panel, it have a trigger level knob and three soft buttons. The following exercise guides you through these trigger buttons, knobs, and status bar.

Figure 1-12

1 Turn the trigger Level knob and notice the changes it makes to the display.

On the DS5000 series oscilloscopes, as you turn the LEVEL knob or press the 50% menu button, for a short time two things happen on the display. First, the trigger level value is displayed at the bottom-left of the screen. If the trigger is DC coupled, it is displayed as a voltage. If the trigger is AC coupled or LF reject, it is displayed as a percentage of the trigger range. Second, a line is displayed showing the location of the trigger level (as long as AC coupling or low frequency reject are not selected).

2 Change the trigger setup and notice these changes affects the status bar differently.

• Press MENU button in the trigger control area.

A soft button menu appears on the display showing the trigger setting choices. Figure 1-13 displays this trigger menu.

TRIGGER· Press the trigger type button and notice the differences between EdgeModeVideoPulse

• Press the trigger Slope button to notice the differences between Rising Edge and Falling Edge.

· Press the trigger Source button to select trigger source choices.

 \cdot Press the trigger $\ensuremath{\operatorname{\mathsf{Mode}}}$ button to select these three trigger mode choices.

 \cdot Set the Coupling and notice that they affect the waveform display differently.

NOTE: The trigger type, slope and source change in conjunction with the status bar on the top-right of the screen.

Figure 1-13

Edge

CH1

Ŧ

Auto

Coupling DC

3 Press 50%

This key is an action button. Every time you press the 50% button, the oscilloscope sets the trigger level to the center of the signal.

4 Press FORCE

Press this button starts an acquisition regardless of an adequate trigger signal. This button has no effect if the acquisition is already stopped.

Chapter 2 : Operating your oscilloscope

By now you get a brief understanding of DS5000 series with the VERTICAL, HORIZONTAL, and TRIGGER groups of the front-panel buttons. You should also know how to determine the setup of the oscilloscope by viewing the status bar. This chapter takes you through all groups of front-panel buttons, knobs, and menus. You will also add to your knowledge of the operation hints by reading this guide. We recommend you perform all of the following exercises so you become familiar with the powerful measurement capabilities of the oscilloscope.

This chapter covers the following topics:

- Understand the vertical system
- Understand the horizontal system
- Understand the trigger system
- How to set up the sampling system
- How to set up the display system
- How to save and recall waveforms or setups
- How to set up utility
- How to measure automatically
- How to measure with cursors
- How to use instant execute buttons

Understand the vertical system

I .Settings of the channels

Each channel of DS5000 has an operation menu and it will pop up after pressing $\overline{CH1}$ or $\overline{CH2}$ button. The settings of all items in the menu are shown in the table below.

Table2-1

Menu	Settings	Comments
Coupling	AC DC GND	AC blocks the DC component of the input Signal DC passes both AC and DC components of the input signal GND disconnects the input signal
BW Limit	ON OFF	Limits the channel bandwidth to 20MHz to reduce display noise. To set "OFF" will get full bandwidth.
Probe	1X 10X 100X 1000X	Set this to match your probe attenuation factor to make the vertical scale readout correct
Digital filter		Setup digital filter
Volts/Div	Coarse Fine	Selects the resolution of the SCALE knob coarse defines a 1-2-5 sequence. Fine changes the resolution by small steps between the coarse settings.
Invert	ON OFF	Turn on the invert function. Restore to original display of the waveform.
Input	1MΩ 50Ω	Set $1M\Omega$ input impedance Set 50Ω input impedance

NOTE: The input impedance select function $(1M\Omega/50\Omega)$ is only provided in certain models.

1. Channel coupling

To use CH1 as an example, input a signal that is a sine wave signal with DC shift

Press $CH1 \rightarrow Coupling \rightarrow AC$, to set CH1's coupling as "AC". In this setting, it blocks the DC component of the input signal.

The waveform is displayed as Figure 2-1:

Press $CH1 \rightarrow Coupling \rightarrow DC$, to set CH1's coupling as "DC". In this setting, it passes both AC and DC components of the input signal.

The waveform is displayed as Figure 2-2:

Press $CH1 \rightarrow Coupling \rightarrow GND$, to set CH1's coupling as "GND". In this setting, it disconnects the input signal.

The screen displays as Figure 2-3:

2. Set up the channel bandwidth limit

To use CH1 as an example, input a signal that contains high frequency component. Press $\overline{CH1} \rightarrow BW \text{ Limit} \rightarrow \text{OFF}$, to set up bandwidth limit to "OFF" status. It will pass the high frequency component in the signal and the oscilloscope is set to full bandwidth.

The waveform is displayed as Figure 2-4:

Press $CH1 \rightarrow BW \text{ Limit} \rightarrow ON$, to set up bandwidth limit to "ON" status. It will reject the frequency component higher than 20MHz.

The waveform is displayed as Figure 2-5:

3. Probe Attenuation Setting

When using a probe, the oscilloscope allows you to enter the attenuation factor for the probe. The attenuation factor changes the vertical scaling of the oscilloscope so that the measurement results reflect the actual voltage levels at the probe tip. To change (or check) the probe attenuation setting, press the CH1 or CH2 button (according to which channel you are using), toggle the Probe soft button to change the attenuation factor to match the probe you are using. This setting remains in effect until changed again.

CH1 S TOP Coupling DC BW Limit OFF Probe Probe attenuation (1000X factor Digital Filter 1/2CH1~ (00V Time 100.0ns 🛛 🔂 40.00 Status changes with Figure 2-6 the probe attenuation

Figure 2-6 gives an example for using a 1000:1 probe and it's attenuation factor.

Table 2-2

Probe attenuation factors	Corresponding settings
1:1	1X
10:1	10X
100:1	100X
1000:1	1000X

4. Digital Filter:

Press $CH1 \rightarrow Digital filter$, display the digital filter menu. Turn horizontal position knob to set high and low limit of frequency.

140102 5

Menu	Settings	Comments
Digital Filter	On Off	Turn on the digital filter Turn off the digital filter

Filter Type		Setup as LPF (Low Pass Filter) Setup as HPF(High Pass Filter) Setup as BPF (Band Pass Filter) Setup as BRF(Band Reject Filter)
Upper limit	∢ ₩►	Revolving horizontal position knob setting high limit
Lower limit	₹	Revolving horizontal position knob setting low limit

5. Volts/Div settings

The Volts/Div control has Coarse or Fine configuration.

- **Coarse:** It is the default setting of Volts/Div, and it makes the vertical scaling in a 1-2-5-step sequence from 2mV/div, 5mV/div, 10mV, to 5 V/div.
- **Fine:** This setting changes the vertical scale to small steps between the coarse settings. It will be helpful when you need to adjust the waveform's vertical size in smooth steps

Coarse/Fine Shortcut key:

Changing Coarse/Fine function not only by menu but also by pressing vertical SCALE knob

6. To invert a waveform

Invert turns the displayed waveform 180 degrees, as respect to the ground level, and is available for channel 1 and 2 only. When the oscilloscope is triggered on the inverted signal, the trigger is also inverted.

Push the CH1 or CH2 button and then press the Invert button to invert the waveform on this activated channel.

Figure 2-10 and 2-11 show the changes after inversion.

The waveform after inversion

7. Select input impedance

Select channel input impedance as $1M\Omega$ or 50Ω . If 50Ω is selected, the input coupling is automatically set to DC.

CAUTION: When 50Ω is selected, **ALWAYS ENSURE** the input voltage at BNC does **NOT** exceed the maximum voltage (5Vrms) to avoid damaging channel input components.

Do not use 50Ω with the standard probe.

Table2-4

50Ω	Models
Provided	DC5202CA, DS5152CA, DS5152C, DS5152MA, DS5152M
Not provided	DS5102CA, DS5102C, DS5062CA, DS5062C, DS5102MA DS5102M, DS5062MA, DS5062M, DS5042M, DS5022M
$\blacksquare. \quad \textbf{Math functions}$

The mathematic functions include "add", "subtract", "multiply" and "divide" "FFT" for CH1 and CH2. The mathematic result can also be measured by grid and cursor.

Press MATH button to display the MATH menu, the settings of this menu are shown in the table below.

The amplitude of mathematic waveform can be adjust by the vertical \underline{SCALE} knob in a 1-2-5 step from 0.1% to 1000%, such as 0.1%; 0.2%; 0.5%.....1000%. The scale will be displayed on the status bar.

Table2-5

Menu	Settings	Comments	
	A+B	Add source A to source B	
	A-B	Subtract source B from source A	
Operation	A×B	Multiply source B by source A	
	A÷B	Source A divided by source B	
	FFT	Fast Fourier Transform	
	CH1	Define CH1 or CH2 as source A	
Source A	CH2		
Source B	CH1	Define CH1 or CH2 as source B	
Source D	CH2	Define Chi of Chiz as source D	
		Set "ON" to invert the MATH waveform.	
Invert		Restore to original display of the	
		waveform.	

Using the FFT

The FFT (fast fourier tranform) process mathematically converts a time-domain signal into its frequency components. FFT waveforms are useful in the following applications:

- Measuring harmonic content and distortion in systems
- Characterizing noise in DC power supplies
- Analyzing vibration

FFT		Menu	Settings	Comments
perate			A+B	Add source A to source B
FFT			A- B	Subtract source B from source A
Source		Operation	AxB	Multiply source B by source A
CH1			A÷B	Source A divided by source B
Mindouu			FFT	Fast Fourier Transform
		Course	CH1	Define CH1 or CH2 as FET course
ectangle		Source	CH2	Define CH1 of CH2 as FF1 source
Display			Rectangle	
Split		Window	Hanning	Salact window for EET
Scale			Hamming	Select window for fif f
VRMS			Blackman	
		Display	Split	Display FFT waveform on half screen
			Full screen	Display FFT waveform on full screen
		Scalo	Vrms	Set "Vrms " as vertical unit
	Scale	Scale	dBVrms	Set "dBVrms " as vertical unit

Figure 2-14 Table2-6

Key points for FFT

- 1 Signals that have a DC component or offset can cause incorrect FFT waveform component magnitude values. To minimize the DC component, choose AC Coupling on the source signal.
- 2 To reduce random noise and aliases components in repetitive or single-shot events, set the oscilloscope acquisition mode to average.
- 3 To display FFT waveforms with a large dynamic range, use the dBVrms scale. The dBVrms scale displays component magnitudes using a log scale.

Selecting an FFT Window

The DS5000 series oscilloscopes provide four FFT windows. Each window is a trade-off between frequency resolution and amplitude accuracy. What you want to measure and your source signal characteristics help determine which window to use. Use the following guidelines to select the best window.

Table2-7

Window	Characteristics	Best for measuring
Rectangle	Best frequency resolution, worst magnitude resolution. This is essentially the same as no window.	Transients or bursts , the signal levels before and after the event are nearly equal. Equal-amplitude sine waves with fixed frequencies. Broadband random noise with a relatively slow varying spectrum.
Hanning Hamming	Better frequency, poorer magnitude accuracy than Rectangular. Hamming has slightly better frequency resolution than Hanning.	Sine, periodic, and narrow-band random noise. Transients or bursts where the signal levels before and after the events are significantly different.
Blackman	Best magnitude, worst frequency resolution	Single frequency waveforms, to Find higher order harmonics.

Key points:

FFT Resolution: the quotient between sampling rate and number of FFT points. With a fixed FFT points, the lower sampling rate results in better resolution.

Nyquist Frequency

The highest frequency that any real-time digitizing oscilloscope can acquire without aliasing. It's normally half of the sample rate. This frequency is called the Nyquist frequency. Frequency above the Nyquist frequency will be under sampled, causing a situation known as aliasing.

III. Using REF

Reference Waveforms are saved waveforms to be selected for display. The reference function will be available after saving the selected waveform to nonvolatile memory.

Press REF button to display reference waveform menu.

Table2-8

Menu	Settings	Comments
Source	CH1 CH2	Select channel for REF
Save		Select reserved waveform as resource of REF
Invert	ON OFF	Set "ON" to invert the REF waveform. Restore to original display of the waveform.

Figure 2-15

Displaying a Reference Waveform.

- 1. Push REF button to show the reference waveform menu.
- 2. Select Source CH1 or CH2 to display the channel you want.
- 3. Revolving vertical position and vertical scale to change positions
- 4. Press save to save the currently displayed waveform as REF.

NOTE:

- 1. The reference function is not available in X-Y mode.
- 2. You cannot adjust the horizontal position and scale on the reference waveform.

$\operatorname{IV}\nolimits{\mathbf .}$ Remove Waveforms from the Display

The CH1, CH2 of DS5000 series are channels to input signals. The operations for MATH and REF are also regarded as independent channels.

Press MATH and REF buttons to select these channels, press OFF button to remove the selected waveform from the screen.

Table2-9

Channel	Status	Symbol		
Channel	Status	DS5000M	DS5000C	
Channel 1 (CH1)	Selected	CH1	CH1	
	ON	CH1	CH1	
	OFF	No status symbol	No status symbol	
Channel 2 (CH2)	Selected	CH2	CH2	
	ON	CH2	CH2	
	OFF	No status symbol	No status symbol	
Mathematic	Selected	Math	Math	
operation	ON	Math	Math	
(MATH)	OFF	No status symbol	No status symbol	

$V.\ensuremath{\mathsf{Using}}\ensuremath{\mathsf{Vertical}}\xspace$ POSITION and SCALE

You can use the vertical controls to display waveforms, adjust vertical scale and position, and set input parameters.

1. Using vertical POSITION knob.

The vertical position of waveforms (including MATH and REF) can be changed by moving them up or down on the display. To compare data, you can align a waveform above another or you can align waveforms in superposition.

2. Using vertical SCALE knob.

The vertical scale of a waveform (including MATH and REF) can be changed. The waveform display will contract or expand about the ground level.

If the Volts/Div is set to "Coarse", the waveform scales in a 1-2-5 step sequence from 2 mV to 5 V. If the Volts/Div is set to "Fine", it scales to small steps between the coarse settings.

When scaling MATH waveform, amplitude can be changed with the \underline{SCALE} knob in a 1-2-5 step from 0.1% to 1000%.

The FINE vertical control can be achieved by pressing the vertical SCALE knob.

- 3. Adjust the vertical position and scale only when the waveform is selected.
- 4. When you change the vertical position, the position message is displayed on the left bottom of the screen.

Understand the Horizontal System

The oscilloscope shows the time per division in the scale readout. Since all active waveforms use the same time base, the oscilloscope only displays one value for all the active channels, except when you use Delayed Scan.

The horizontal controls can change the horizontal scale and position of waveforms. The horizontal center of the screen is the time reference for waveforms. Changing the horizontal scale causes the waveform to expand or contract around the screen center.

Horizontal position changes the point, relative to the trigger, where the waveform appears on the center of the screen.

The Horizontal Knobs

POSITION: The horizontal POSITION knob adjusts the horizontal position of all channels and math or REF waveforms. The resolution of this control varies with the time base.

The oscilloscope digitizes waveforms by acquiring the value of an input signal at discrete points. The time base allows you to control how often the values are digitized.

SCALE: To adjust the time base to a horizontal scale that suits your purpose, use the horizontal SCALE knob.

The SCALE selects the horizontal time/div (scale factor) for the main or the Delayed Scan time base. When Delayed Scan is enabled, it changes the width of the window zone by changing the Delayed Scan time base.

Horizontal Menu.

Press the horizontal MENU button to display the horizontal menu. The settings of this menu are listed in the following table.

Table 2-10

Menu	Settings	Comments
Delayed	ON OFF	Enter Delayed Scan mode Turn off the Delayed Scan mode
Time Base	Y-T X-Y	Show the relative relation between vertical voltage and horizontal time. Show CH1 value at X axis; CH2 value at Y axis.
* #>	Trig-offset Holdoff	Adjust horizontal position in memory Adjust Holdoff time
Trig-offset Reset		Adjust to the center
Holdoff Reset		Reset Hold off time to 100ns

Figure 2-15: Status bar and mark for Horizontal control

Marks and status bar

- ① This mark displays the trigger position in the memory.
- ② The mark "[]" represent the current waveform window's position in the

memory.

- ③ This mark displays the trigger position in the waveform windows.
- ④ Status bar displays the horizontal time base (main time base).
- ⁽⁵⁾ Status bar displays the trigger's horizontal offset according to the center of the window.

Key Points

- **Y-T:** The conventional oscilloscope display format. It shows the voltage of a waveform record (on the vertical axis) as it varies over time (on the horizontal axis).
- **X-Y:** XY format displays channel 1 in the horizontal axis and channel 2 in the vertical axis.
- **Time/Div:** Horizontal scale. If the waveform acquisition is stopped (using the RUN/STOP button), the Time/Div control expands or compresses the waveform.
- **Roll Mode Display:** When the Time/Div control is set to 50 ms/div or slower and the trigger mode is set to Auto, the instrument enters the rolling acquisition mode. In this mode, the waveform display updates from left to right. There is no trigger or horizontal control of waveforms during rolling mode.

Delayed Scan:

The Delayed Scan is a magnified portion of the main waveform window. You can use Delayed Scan to locate and horizontally expand part of the main waveform window for a more detailed (higher horizontal resolution) analysis of signal. Use Delayed Scan to expand a segment of a waveform to see more detail. The Delayed Scan time base setting cannot be set slower than the Main time base setting.

Figure 2-16: Delayed Scan window

The following steps show you how to use Delayed Scan.

- **1.** Connect a signal to the oscilloscope and obtain a stable display.
- 2. Press horizontal MENU → Delayed → ON or press horizontal SCALE knob to enter Delayed Scan mode.

The screen is divided into two parts. The top half displays the main waveform window, and the bottom half displays an expanded portion of the main waveform window. This expanded portion of the main window is called the Delayed Scan window. Two blocks shadow the top half, the unshadowed portion is expanded in the lower half. The horizontal **POSITION** and **SCALE** knobs control the size and position of the Delayed Scan. The symbol in the middle of the screen is the main time base and the symbol on the center bottom is the Delayed Scan time base.

Copyright 2004 Rigol Electronic

• Use the horizontal **POSITION** knob to change the position of the expanded portion.

- Turn the horizontal SCALE knob to adjust the Delayed Scan resolution.
- To change the main time base, you must turn off the Delayed Scan mode.
- Since both the main and Delayed Scan are displayed; there are half as many vertical divisions so the vertical scaling is doubled. Notice the changes in the status bar.

Delayed Scan Shortcut Key:

Delayed Scan function can be activated not only by menu but also by pressing horizontal SCALE knob.

X-Y Format

This format compares the voltage level of two waveform records point by point. It is useful for studying phase relationships between two waveforms.

This format only applies to channels 1 and 2. Choose X-Y display format to display channel 1 in the horizontal axis and channel 2 in the vertical axis. The oscilloscope uses the untriggered sample acquisition mode and data displays as dots. The sampling rate can vary from 4 KS/s to 100 MS/s, and the default sampling rate is 1 MS/s.

Figure 2-17: X-Y display format

The following modes or functions will not work in X-Y format.

- The Automatic Measurements
- The Cursor Measurements
- Pass/Fail test
- REF and MATH Operations
- The Delayed Scan Mode
- The Vector Display Mode
- Horizontal POSITION knob
- Trigger Controls

Trigger Holdoff

Trigger Holdoff can stabilize waveform. Holdoff time is the oscilloscope's waiting period before starting a new trigger. During the Holdoff oscilloscope will not trigger until Holdoff ends

Figure 2-18: Trigger Holdoff

To use trigger Holdoff:

- 1. Push TIME, display time base menu
- 2. Push 3rd function key, select trigger Holdoff function
- 3. Adjust horizontal POSITION to change Holdoff time until waveform is stable
- 4. Push 4th function key can reset the Holdoff time to it's 100ns minimum value

Understand the Trigger System

The trigger determines when the oscilloscope starts to acquire data and display a waveform. When a trigger is set up properly, it can convert unstable displays or blank screens into meaningful waveforms.

When the oscilloscope starts to acquire a waveform, it collects enough data so that it can draw the waveform to the left of the trigger point. The oscilloscope continues to acquire data while waiting for the trigger condition to occur. After it detects a trigger, the oscilloscope continues to acquire enough data so that it can draw the waveform to the right of the trigger point.

The trigger control area on the front panel includes a knob and three buttons:

- LEVEL:
 - : The knob that set the trigger level
- 50%: The instant executes button setting the trigger level to the vertical midpoint between the peaks of the trigger signal
- FORCE: Starts an acquisition regardless of an adequate trigger signal. This button has no effect if the acquisition is already stopped.
- MENU: The button that activates the trigger controls menu.

Figure 2-19: Trigger controls

Trigger Types

The oscilloscope provides three trigger types: Edge, Video and Pulse.

- **Edge:** Edge trigger can be used in analog and digital circuits. An edge trigger occurs when the trigger input passes through a specified voltage level in the specified slope direction.
- Video: Use video trigger on fields or lines for standard video signals.
- **Pulse:** Use this trigger type to catch pulses with certain pulse width.

Settings for Edge Trigger

The Slope and Level controls help to define the trigger. The Slope control determines whether the oscilloscope finds the trigger point on the rising or the falling edge of a signal. To access the trigger slope control, press the MENU button, select Edge, and use the Slope button to select Rising or Falling.

Menu	Settings	Comments
	CH1	Selects CH1 as the trigger signal
	CH2	Select CH2 as the trigger signal
Sourco	EXT	Select EXT TRIG as the trigger signal
Source	EXT/5	Select EXT TRIG/5 as the trigger signal
	AC Line	Select power line as the trigger signal
EXT (50Ω)		Select EXT TRIG(50 Ω) as the trigger signal,
Classe	Rising	Trigger on rising edge
Falling		Trigger on falling edge
	Auto	Acquire waveform even no trigger occurred
Mode	Normal	Acquire waveform when trigger occurred.
	Single	When trigger occurs, acquire one waveform then stop
	AC	
Coupling	DC	Selects the components of the trigger signal applied
Coupling	LF Reject	to the trigger circuitry
	HF Reject	

Table 2-11:

Settings for Video Trigger

Choose video triggering to trigger on fields or lines of NTSC, PAL, or SECAM standard video signals. Trigger coupling preset AC.

Table 2-12:

Menu	Settings	Comments
	CH1	Selects CH1 as the trigger signal
	CH2	Select CH2 as the trigger signal
Source	EXT	Select EXT TRIG as the trigger signal
	EXT/5	Select EXT TRIG/5 as the trigger signal
	EXT (50Ω)	Select EXT TRIG(50 Ω) as the trigger signal
Polarity	☐ Normal polarity	Triggers on the negative edge of the sync pulse
	Π Inverted polarity	Triggers on the positive edge of the sync pulse
	All Lines	Trigger on all lines
Sync	Line Num	Trigger on an appointed line
	Odd field Even field	Select to trigger on odd field or even field
Standard	PAL/SECAM/NTSC	Setup synchronization and line number count to certain video system

Key points

- **Sync Pulses:** When Normal Polarity is selected, the trigger always occurs on negative-going sync pulses. If the video signal has positive-going sync pulses, use the Inverted Polarity selection.
- **Source-EXT**(50Ω): This function is only in models that the bandwidth is higher than 100MHz. And normally used ONLY for a signal source that requires 50Ω termination.

The figure 2-19 and 2-20 display the waveforms with Line and Field synchronization.

Figure 2-19: Line synchronization

Figure 2-20: Field synchronization

Settings for Pulse width trigger

Pulse trigger occurs according to the width of pulse.

Tab	e2-	13
-ub	22	

Menu	Settings	Comments		
Source	CH1 CH2 EXT EXT/5 EXT (50Ω)	Selects CH1 as the trigger signal Select CH2 as the trigger signal Select EXT TRIG as the trigger signal Select EXT TRIG/5 as the trigger signal Select EXT TRIG(50Q) as the trigger signal		
When	 	Positive pulse width less than Positive pulse width larger than Positive pulse width equal to Negative pulse width less than Negative pulse width larger than Negative pulse width equal to		
Setting	∢ 鎌 ▶ <width></width>	Adjust pulse width		
Mode	Auto Normal Single	Acquire waveform even no trigger occurred Acquire waveform when trigger occurred. When trigger occurs, acquire one waveform then stop		
Coupling	DC AC HF Reject LF Reject	Allow all signals pass Block DC signals Reject high frequency signals Reject DC and Low frequency signals		

Note: the Pulse width adjust range is 20ns $\,\sim\,$ 10s. The oscilloscope will be trigged when signal meets the preset condition.

Trigger Key Points

1. Trigger Source:

Trigger can occur from several sources: Input channels (CH1 or CH2), AC Line, Ext, Ext/5. EXT (50Ω)

- **CH1 or CH2:** it is the most commonly used trigger source. The channel will function when selected as a trigger source whatever displayed or not.
- **Ext Trig**: The instrument can trigger from a third source while acquiring data from CH1 and CH2. For example, you might want to trigger from an external clock or with a signal from another part of the test circuit.

The Ext, Ext/ 5 and Ext (50 Ω) trigger sources use the external trigger signal connected to the EXT TRIG connector. Ext uses the signal directly, it has a trigger level range of +1.6 V to -1.6 V.

The EXT/ 5 trigger source attenuates the signal by 5X, which extends the trigger level range from +8 V to -8 V. This allows the oscilloscope to trigger on a larger signal.

EXT (50 Ω) sets the input impedance to 50 Ω . It is normally used for high frequency signals where a 50 Ω low impedance termination is required

CAUTION: When 50Ω is selected, **ALWAYS ENSURE** the input voltage at BNC does **NOT** exceed the maximum voltage (5Vrms) to avoid damaging channel input components.

Do not use 50Ω with the standard probe.

AC Line: AC power can be used to trigger DS5000 oscilloscope when you want to look at signals related to the power line frequency, such as lighting equipment and power supply devices. The oscilloscope get triggered on it's power cord, so you do not have to input a AC trigger signal. When AC Line is selected as trigger source, the oscilloscope automatically set coupling to DC, set trigger level to 0v.

2. Trigger Mode:

The trigger mode determines how the oscilloscope behaves in the absence of a trigger event. The oscilloscope provides three trigger modes: Auto, Normal, and Single.

Auto: This trigger mode allows the oscilloscope to acquire waveforms even when it does not detect a trigger condition. If no trigger condition occurs while the oscilloscope waits for a specific period (as determined by the time-base setting), it will force itself to trigger.

When forcing invalid triggers, the oscilloscope cannot synchronize the waveform, and the waveform seems to roll across the display. If valid triggers occur, the display becomes stable on the screen.

- **NOTE:** When horizontal control is set under 50ms/div, Auto mode allow the oscilloscope go to the rolling mode without trigger.
- **Normal:** The Normal mode allows the oscilloscope to acquire a waveform only when it is triggered. If no trigger occurs, the oscilloscope keeps waiting, and the previous waveform, if any, will remain on the display.
- **Single:** In Single mode, After pressing the <u>RUN/STOP</u> key, the oscilloscope waits for trigger. While the trigger occur, the oscilloscope acquire one waveform then stop.

3. Coupling:

Trigger coupling determines what part of the signal passes to the trigger circuit. Coupling types include AC, DC, LF Reject and HF Reject.

- **AC:** AC coupling blocks DC components.
- **DC:** DC coupling passes both AC and DC components.
- **LF Reject:** LF Reject coupling blocks DC component, and attenuates all signal with a frequency lower than 8kHz.
- **HF Reject:** HF Reject coupling attenuates all signal with a frequency higher than 150kHz.

4. Pretrigger/delayed trigger: the data before and after trigger

The trigger position is typically set at the horizontal center of the screen. In the full-screen display the 6div data of pretrigger and delayed trigger can be surveyed. More data (14div) of pretrigger and 1s delayed trigger can be surveyed by adjusting the horizontal POSITION.

This feature is very useful because you can see the events that led up to the trigger point. Everything to the right of the trigger point is called posttrigger information. The amount of delay range (pretrigger and posttrigger information) available is dependent on the sweep speed selected.

How to Set Up the Sampling System

As Figure 2-22 displays, the ACQUIRE button for sampling system is at the MENU

Use ACQUIRE button to pop up the menu as follows:

Figure 2-23	Table 2-15		
ACQUIRE	Menu	Settings	Comments
Acquisition Normal	Acquisition	Normal Average Analog Peak Detect	Normal Acquisition mode Average Acquisition mode Analog Acquisition mode Peak Detect Acquisition mode
Sampling	Sampling	Real-Time Equal-Time	Realtime sampling mode Equivalent sampling mode
Equ-Time	Averages	2 to 256	Step by multiple of two. Set average times from 2 to 256
Anti-aliasing	Intensity	↓ 鎌 → < i % >	Adjust the analog display intensity
OFF	Anti-Aliasing	ON	Turn on Anti-Aliasing function
		OFF	Turn off Anti-Aliasing function

The waveform displayed on the screen will change in conjunction with the setting of ACQUIRE menu.

Figure 2-24: Signal that contains noise, and without average sampling

Figure 2-25: Display signal after average sampling

Note:

- Select **Real-time** acquisition to observe the single-shot or pulse signals. Select **Equal-Time** to observe high frequency repetitive signal.
- To reduce the displayed random noise, select the Averages Acquisition. And this

Copyright 2004 Rigol Electronic

mode would make the screen refresh slow.

• To Avoid signal aliasing, select **Peak Detect** Acquisition.

Figure 2-26: Signal with Peak Detect Acquisition

The Peak Detect is shown as the figure above, and the signal is displayed with the diagonal between the envelopes.

To use roll mode

Roll mode continuously moves data across the display from left to right. It allows you to see dynamic changes (like adjusting a potentiometer) on low frequency signals. Two frequently used applications are transducer monitoring and power supply testing.

The oscilloscope is untriggered and runs continuously at roll mode. You can also make automatic measurements in the roll mode. The acquisition system does not miss any data during the measurement. The slight shift in the display after the measurement is complete is that of the display catching up to the acquisition system.

Stop acquisition

When acquisition stopped, the freeze waveform is displayed. It can be moved by vertical horizontal control.

Key Points

Real-time Sampling: DS5000 has Real-time sampling rate up to 1GSa/s. At the timebase 20ns or faster, the oscilloscopes use the sine(x)/x interpolation to expand the horizontal timebase.

Equivalent sampling: Also be known as Repetitive sampling. In this mode, you can get up to 20 ps of horizontal resolution (equivalent50Gsa/s). This mode is good for observing repetitive signals, and it will not be available for single-shot or pulse.

Average Acquisition: Apply averaging to your signal to remove uncorrelated noise and improve measurement accuracy. Reduces random or uncorrelated noise in the signal display. The averaged waveform is a running average over a specified number of acquisitions from 2 to 256.

Analog acquisition: The oscilloscope calculates a probability based on how often a dot is lit on through out multiple acquisition, and displays the dot intensity according to that probability, to make the waveform looks like an analog oscilloscope display.

Peak Detect: Peak Detect mode capture the maximum and minimum values of a signal. Finds highest and lowest record points over many acquisitions.

Anti-Aliasing: Aliasing is the condition that oscilloscope acquire frequency is lower than twice the max frequency of input signal. Anti-Aliasing prevents it. The Anti-Aliasing function could detect the max signal frequency to avoid aliasing.

How to Set Up the Display System

Figure 2-27 shows the menu button for the display system on the front panel.

Figure 2-27

Display Setting Menu

Press the DISPLAY button to pop up the menu for the settings of the display system.

Figure 2-28 Table 2-16

DISPLAY
Туре
Vectors
Grid
* +
<u> </u>
1/2

Menu	Setting	Comments
Туре	Vectors Dots	Display waveforms as vectors Display waveforms as dots
Grid		Display grids and coordinates on the screen Turn off the grids Turn off the grids and coordinates
) (Press to increase display contrast
)) (Press to decrease display contrast

```
Figer2-29
```

DISPLAY

2/2 Persist OFF Jenu Displa 5 S

Normal

Table2-17

	Menu	Settings	Comments
Р	ersist	Infinite OFF	The sample points remain displayed until turn the persistence "OFF". Turn off the persistence function
M D	1enu Display	1s 2s 5s 10s 20s Infinite	Set the time before hiding menu. The menu will be hidden according to the time after last button pressing.
S	Screen	Normal Invert	Set to normal mode Set to invert color display mode

Key points:

Display type: Display type contains Vectors and Dots. In vectors type, oscilloscope connects with dots through digital interpolation and contains linearity with sin(x)/x. sin(x)/x interpolation is suitable for Real-time sampling and will be more effective at 20ns or faster timabase.

Refresh rate: It is an important performance of digital oscilloscopes. It means times of oscilloscopes' refreshing per second and will affect the ability to observe signal. The refresh rate of DS5000 series digital oscilloscope is over 1K per second.

How to Store and Recall Waveforms or Setups

Figure 2-30 shows the menu button for the storage system on the front panel.

Press the STORAGE button to pop up the menu for the settings of the storage system.

Figure	2-31	Table	2-18

STORAGE	Menu	Settings	Comments
Storage Waveforms	Storage	Waveforms Factory Setups	Store or recall waveforms Recall factory setups Store or recall instrument setups
Waveform	Waveform	No.1 No.2 No.3 No10	Select storage location of waveform
Save	Setup	No.1 No.2 No.3 No10	Select storage location of setup
	Load		Set recalling of stored documents
	Save		Set storage of waveform data

Key Points for Storage System

Factory Setup: The oscilloscope is set up for normal operation when it is shipped from the factory. You can recall the factory default setup any time you want to operate the oscilloscope using or starting from the factory default settings.

Waveform: You can save 10 waveforms of two channels and 10 settings in the nonvolatile memory of the oscilloscope and overwrite previously saved contents as needed. By default, the oscilloscope saves the setup each time it is powered off. The oscilloscope automatically recalls this setup the next time it is powered on.

Load: The stored waveforms, setups and factory setup can be recalled out.

Save: Store existing waveforms or setups.

NOTE:

• The **Save** stores not only the waveforms, but also the current settings of the oscilloscope

• The user should wait at least five seconds before turning off the instrument if the settings are changed. This ensures the setup be saved properly. The oscilloscope can store 10 settings permanently and can restore at anytime.

How to Set Up the Utility

Figure 2-32 shows the menu button for the Utility on the front panel.

Press the UTILITY button to pop up the menu for the settings of the Utility system.

Figure 2-33 Table 2-19

Menu	Setting	Comments
I/O settings		Setup I/O configuration
Sound	 €€ (ON) € € (OFF) 	Switch beeper sound on/off
Counter	OFF ON	Turn off Frequency Counter Turn on Frequency Counter
Language	Simplified Chinese Traditional Chinese English Korean Japanese	Select languages (More languages may be added in later software versions)

UTILITY

IO Setting

∢€

UTILITY

IO Setting

∢€

OFF

English 1/2

Menu	Settings	Comments
Pass/Fail		Setup Pass/Fail test
Record		Setup Waveform Recorder
Self-Cal		Execute Self-calibration
Self-Test		Execute Self-test

OFF Language English 1/2

Copyright 2004 Rigol Electronic

Table2-20

The I/O setup:

Press UTILITY → I/O Setup to enter the following menu

Figure 2-35

Table2-21

Menu	Display	Comments
RS-232 Baud	*****	Set RS-232 communication baud rate. This function is only available when EM5-CM or EM5-COM is attached to the instrument
GPIB Address	****	Set GPIB address. This function is only available when EM5-CM or EM5-COM is attached to the instrument
᠂ᢞ		USB unconnected

Figure 2-36

Table	2-22

Menu	Settings	Comments
RS-232 Baud	300 38400	Set RS-232 baud rate as 300, 2400, 4800, 9600, 19200 or 38400.
GPIB Address	0 30	Set GPIB address from 0 to 30, steps by 1.
᠂ᢡ✓		USB connected

NOTE:

- Before install or uninstall an extension module, it must be confirmed that the oscilloscope powers is off.
- More details could be found in the user manual for extension module.

Auto Calibration

The Auto-Calibration adjusts the oscilloscope's internal circuitry to get the best accuracy. Use these functions to calibrate the oscilloscope's vertical and horizontal systems.

For maximum accuracy at any time, run the routine if the ambient temperature changes by 5° C or more.

Before running this procedure, do these steps:

- 1. Disconnect any probes or cables from all channel inputs, otherwise failure or damage to the oscilloscope may occur.
- 2. Push the UTILITY button and select Self-Cal

The self-calibration menu is displayed as Figure 2-37.

CAUTION:	
Disconnect erverything from all inputs	
CH1 Vertical System	
Press "RUN" key to start Press "AUTO" key to exit	

NOTE:

The oscilloscope must have been working or warm-up at least 30-minutes before running self-calibrate

Pass/fail

Figure 2-38

The pass/fail function can monitor changes of signals and output pass or fail signals by judging the input signal is within the pre-defined mask or not.

PASS/FATL Enable Test
OFF
Source
CH1
Operate
Msg Display
OFF
1/3

Table 2-23

Menu	Setting	Comments	
Enable	On	Turn on Pass/Fail test	
Test	Off	Turn off Pass/Fail test	
Source	CH1	Select pass/fail test on CH1	
	CH2	Select pass/fail test on CH2	
Operation	(RUN)	Pass/fail test stopped, press to run	
	■ (STOP)	Pass/fail test running, press to stop	
Msg	On	Turn on pass/fail information display	
display	Off	Turn off pass/fail information display	

Table 2-24

PASS/FAIL
2/3
Output
Fail
StopOnOutput
OFF
Load
2/3

Menu	Settings	Comments		
Output	Fail	Output when Fail condition detected		
	Fail + 🛠	Output and beep when Fail condition detected		
	Pass	Output when Pass condition		
	_	detected		
	Pass + 🛠	Output and beep when Pass		
		condition detected		
Stop on	On	Stop test when output occur		
Output	Off	Continue test when output occur		
Load		Load a pre-defined test mask		

Figure 2-40 Table 2-25

ASS/FAIL	Menu	Settings	Comments	
2/2	X Mask		Set horizontal clearance to the	
- JJJ - Mack		4₩)	waveform	
			(0.04div-4.00div)	
<u> </u>	Y Mask	(#)	Set vertical clearance to the waveform	
		< y div>	(0.04div-4.00div)	
0.04div	Create		Create a test mask according to the	
Create Mask	Mask		above clearance	
	Save		Store created test mask	
Save		~		

NOTE: Pass/fail function is unavailable in X-Y mode .

Waveform recorder

Waveform recorder can record input waveform from CH1 and CH2, with a maximum record length of 1000 frames. This record behavior can also be activated by the pass/fail test output, which makes this function especially useful to capture abnormal signals in long term without keeping an eye watching it.

 $\mathsf{Press} \ \overline{\mathsf{UTILITY}} \rightarrow \mathsf{Record} \rightarrow \mathsf{Mode} \rightarrow \mathsf{Record}$

Waveform recorder: Record the waveforms with specified interval.

Figure 2-41 Table2-26

RECORD	Menu	Settings	Comments
Mode	Mode	Record	Select record mode
Record		Play back	Select play back mode
Source		Storage	Select storage mode
CH1		Off	Turn off all recorder functions
Interval	Source	CH1	Select record source channel
100ms		CH2	
End Frame	Interval	(#)	Set time interval between record
1000		<1.00ms-1000s>	frames
Operate	End	4 #+	Set number of record frames
	Frames	<1-1000>	
	Operate	• (Record)	Record stopped, press to Start
			recording
		■ (Stop)	Recording, press to stop

Play back: Play back the recorded waveforms.

Figure 2-42 Table2-27

PROOPD		
Mada	Menu	Settings
Mode Play back	Operation	(Play)
Onerate		■ (Stop)
	Msg Display	On
lea Dienlav		Off
ON	Play mode	¢
Plav Mode		▶→■
1/2		
<u></u>		

Comments Play stopped, press to Start playback

Turn on recorder information display Turn off recorder information display

Playing, press to stop

Set circular play mode Set single time play mode
Figure 2-43 Table2-28

RECORD
2/2
Interval ◀ ॖॖॖॖॖॖ ▶ 10.0ms
Start Frame ◀ 🜞 ▶
Current Frame
End Frame ◀ 🌞 ▶ 1000

Menu	Settings	Comments				
Interval	(#)	Set time interval between				
	<1.00ms-20s>	frames				
Start frame	<1-1000>	Set start frame				
Current	<#>	Select current frame to be				
frame	<1-1000>	played				
End frame	<1-1000>	Set End frame				

Note: the RUN/STOP button can also control playback run/stop.

Storage: Store recorded waveforms to non-volatile memory according to setup frames.

Figure 2-44 Table2-29

RECORD
Mode
Record
Start Frame
Save
Load

Menu	Settings	Comments
Start frame	<1-220>	Set first frame to be saved
End frame	<1-220>	Set last frame to be saved
Save		Store the waveforms between start
		frame to End frame
Load		Recall the saved waveforms from
		non-volatile memory

SELF-TEST

System Info

Screen Test

Key Test

Self-Test

Press $UTILITY \rightarrow Self-Test$ to enter the following menu.

Figure	2-45	Tahlo	2-30
rigule	Z-43	lable	2-30

Menu	Settings
System Info	Press to display the information of scope.
Screen Test	Press to run screen test program.
Key Test	Press to run keypad test program.

1. System Info:

Press this soft button to display the information of oscilloscope. It contains Model, Power up times, Serial No., Software version and Installed module of the oscilloscope. And you could follow the prompting message of " << Press `RUN' Key to Exit The Test>>" to exit this interface.

2. Screen Test:

Press this soft button to run Screen Test program. Fellow the prompt message on the screen "Press 'RUN' Key to Continue the Test". The screen of DS5000M series turns black or white in sequence (Mono) and the screen of DS5000C series turns red, green and blue in sequence (Color) when keep pressing the RUN/STOP button. You could check the screen for display failures.

3. Key Test:

Press this soft button to run Keyboard Test program and start the keyboard test routine. The blocks represent the buttons on the front-panel; the rectangular boxes with two arrows beside represent the knobs on the front-panel; the square boxes represent the pressing function for the SCALE knobs. Test all keys and knobs, and check the blocks on the screen response whether or not.

NOTE:

1. The corresponding block on the screen will temporary turn into green (Color models) or white (Mono models) when pressing a key.

2. The blocks will reverse its color to red (Color models) or black (Mono models) when the corresponding key or knob get pressed, and the color will keep reversed during the test.

3. You could follow the prompting message of " << Press RUN' Key Three Times to Exit The Test>>" to exit the test.

Language:

The DS5000 series oscilloscopes have multi-language user menu, choose as your desire.

Press \Box TILITY \rightarrow Language to select the language.

How to Measure Automatically

The MEASURE button in menu area actives the automatic measurement function. The instruction below will guide you using the DS5000 series measurement function.

Figure 2-46

Menu explanation:

Press the MEASURE button to display the menu for the settings of the Automatic Measurements.

The oscilloscopes provide 20 parameters for auto measurement, including Vpp, Vmax, Vmin, Vtop, Vbase, Vamp, Vavg, Vrms, Overshoot, Preshoot, Freq, Period, Rise Time, FallTime, Delay1-2 f, Delay1-2 f, +Width, -Width, +Duty, -Duty, include 10 voltage and 10 time measurements.

Figure 2-47

MEASU

CH

Volta

Tim

Clea

Display OFF Table 2-31

E	Menu	Settings	Comments
	Source	CH1 CH2	Select CH1 or CH2 as source channel for measurement
e	Voltage		Select voltage measurement parameter
	Time		Select time measurement parameter
	Clear		Clear measurement result on screen
	Display All	OFF ON	Turn off all measurement result Turn on al measurement result
All			

Page 1 for voltage measurements

Figure 2-48 Table 2-32

EASURE	Menu	Settings	Comments				
Voltage 1/3	Voltage	1/3	Page 1 for voltage parameters measurements				
Vpp	Vpp		Measure Peak-to-Peak Voltage				
ູ ການການ Vmax	Vmax		Measure maximum voltage of a waveform				
Jan Jan	Vmin		Measure minimum voltage of a waveform				
	Vavg		Measure average voltage of a waveform				

Page 2 for voltage measurements

MEASURE	
Menu Settings Comments	
Voltage 2/3Voltage2/3Page 2 for voltage paramet measurements	ters
Vamp Vamp Measure voltage between Vtop ar Vbase	nd
Vtop Measure a flat top voltage of a square waveform	
Vbase Measure a flat base voltage of a square waveform	
Image: Transmission of a waveform Measure Root Mean Square Voltage	ge

Page 3 for voltage measurements

Figure 2-50	Table 2-34		
MEASURE	Menu	Settings	Comments
Voltage 3/3	Voltage	3/3	Page 3 for voltage parameters measurements
Overshoot	Overshoot		Measure overshoot in percentage of a square waveform
Preshoot	Preshoot		Measure preshoot in percentage of a square waveform

Page 1 for time measurements

Figure 2-51 Table 2-35

MEASURE
Time 1/3
jLĮ.
Freq
 Period
Rise Time
+
Fair (Ime

Menu	Settings	Comments				
Time	1/3	Page	1	for	time	parameters
	1/5	measurement				
Freq		Measure Frequency of a waveform				
Period		Measure Period of a waveform				
Rise time		Measure Rise Time of a waveform				
Fall time		Measure Fall Time of a waveform				

Page 2 for time measurements

Figure 2-52 Table 2-36

MEASURE
Time 2/3
- []-
+Width
_ ₽
-Width
-t⊒t-
+Duty
₩ L
-Duty

Menu	Settings	Comments		
Time	2/3	Page 2 for time parameters measurement		
+Width		Measure +Pulse Width of a waveform		
-Width		Measure –Pulse Width of a waveform		
+Duty		Measure +Duty Cycle of a waveform		
-Duty		Measure – Duty Cycle of a waveform		

Page 3 for time measurements

Figure 2-53 Table 2-37

Menu	Settings	Comments
Time	3/3	Page 3 for time parameters
		measurement
Delay1→2 5		Measure the signals delay between
		two channels at the rising edge
Delay1→2 1		Measure the signals delay between
		two channels at the falling edge

NOTE: The results of the automatic measurements will be displayed on the bottom of the screen. Maximum 3 results could be displayed at the same time. The next new measurement result will make the previous results moving left out of screen.

Using Automatic Measurement as the following steps demonstrate:

1. Select the signal channel for measuring. You could select CH1 or CH2 according to the signal you are interested in.

Press soft buttons as follows: $MEASURE \rightarrow Source \rightarrow CH1$ or CH2.

- 2. To see all measurement value, set the Display All to ON. 18 measurement parameters will be displayed on the screen.
- 3. Select parameters page for measuring. You could select voltage or time parameters pages by pressing soft button as follows: MEASURE → Voltage or time Voltage1/3, Voltage2/3...
- 4. To gain the measured value on the screen. You could select the parameters you are interested in by pressing the soft button on the right of the menu, and read the data on the bottom of the screen.

If the data is displayed as "*****", that means the parameter cannot be measured in current condition.

5. Clear the measure values: press Clear. Now, all of the auto measure values disappear from the screen.

The automatic measurement of the voltage parameters

The DS5000 series oscilloscopes provide voltage measurements including Vpp, Vmax, Vmin, Vavg, Vamp, Vrms, Vtop, Vbase, Overshoot and Preshoot. Figure 2-55 below shows a pulse with some of the voltage measurement points.

- **Vpp:** Peak-to-Peak Voltage.
- **Vmax:** The maximum amplitude. The most positive peak voltage measured over the entire waveform.
- **Vmin:** The minimum amplitude. The most negative peak voltage measured over the entire waveform.
- Vamp: Voltage between Vtop and Vbase of a waveform
- **Vtop:** Voltage of the waveform's flat top, useful for square and pulse waveforms.
- **Vbase:** Voltage of the waveform's flat base, useful for square and pulse waveforms.
- **Overshoot:** Defined as (Vmax-Vtop)/Vamp, useful for square and pulse waveforms.

Preshoot: Defined as (Vmin-Vbase)/Vamp, useful for square and pulse waveforms.

Average: The arithmetic mean over the entire waveform.

Vrms: The true Root Mean Square voltage over the entire waveform.

The automatic measurement of the time parameters

The DS5000 series oscilloscopes provide time parameters auto-measurements include Frequency, Period, Rise Time, Fall Time, +Width, -Width, Delay $1 \rightarrow 2$ f, Delay $1 \rightarrow 2$ f, +Duty and -Duty.

Figure 2-56 shows a pulse with some of the time measurement points.

Figure 2-56

- **Rise Time:** Time that the leading edge of the first pulse in the waveform takes to rise from 10% to 90% of its amplitude.
- **Fall Time:** Time that the falling edge of the first pulse in the waveform takes to fall from 90% to 10% of its amplitude.
- **+Width:** the width of the first positive pulse in 50% amplitude points.
- **-Width:** the width of the first negative pulse in the 50% amplitude points.
- **Delay** $1 \rightarrow 2f$: the delay between the two channels at the rising edge.
- **Delay** $1 \rightarrow 2\frac{1}{2}$: the delay between the two channels at the falling edge.
- +Duty: +Duty Cycle, defined as +Width/Period
- -Duty Cycle, defined as -Width/Period

Copyright 2004 Rigol Electronic

How to measure with cursors

Figure 2-57 displays the CURSOR button on the front-panel for this menu.

The cursor measurement has three modes: Manual, Track and Auto Measure.

- 1. **Manual:** In this mode, the screen displays two parallel cursors. You can move the cursors to make custom voltage or time measurements on the signal. The values are displayed on the boxes below the menu. Before using cursors, you should make sure that you have set the Signal Source as the channel for measuring.
- 2. **Track:** In this mode, the screen displays two cross cursors. The cross cursor sets the position on the waveform automatically. You could adjust cursor's horizontal position on the waveform by turning the horizontal **POSITION** knob in conjunction with the cursor. The oscilloscope displays the values of the coordinates on the boxes below the menu.
- 3. **Auto Measure:** This mode will take effect with Automatic Measurements. The instruments will display cursors while measuring parameters automatically. These cursors demonstrate the physical meanings of these measurements.

NOTE: The Auto Measure mode for Cursor measuring will take no effect without automatic measurements.

Menus and operations of Cursor Measurements

Table 2-38

1. Manual Mode

Figure 2-58
CURSOR
Mode
Manual
Туре
Voltage
Source
CH1
CurA 20.0mV CurB -5.2mV
25.2mV

Menu	Settings	Comments		
Mode	Manual	Set Manual mode in cursor measurement		
Туре	Voltage Time	Use cursor to measure voltage parameters. Use cursors to measure time parameters		
Source	CH1 CH2 MATH	Select the measurement signal source.		

In this mode, the oscilloscope measures the cursors' coordinate values for voltage or time, and the increment between the two cursors.

To do manual Cursor Measurements, follow these steps:

- (1). Select the **Manual** mode for cursor measurement by pressing soft button as: $\boxed{CURSOR} \rightarrow Mode \rightarrow Manual$.
- (2).Select channel **Source** for measurements by pressing soft button as: CURSOR → **Source** → CH1, CH2 or MATH.

NOTE: While measuring the channel of MATH, the results are valued with "d" (division) as units.

- (3). Select the cursors type by pressing soft button as $\boxed{\text{CURSOR}} \rightarrow \text{Type} \rightarrow \text{Voltage}$ or **Time**.
- (4). Move the cursors to adjust the increment between the cursors: (Details in the following Table)

RIGOL

Table 2-39

Cursor	Increment	Operation		
Cursor A	Voltage	Turn the vertical POSITION knob to move		
		cursor A vertically		
	Time	Turn the vertical PSSITION knob to move		
		cursor A horizontally		
Cursor B	Voltage	Turn the horizontal POSITION knob to move		
		cursor B vertically		
	Time	Turn the horizontal PSSITION knob to move		
		cursor B horizontally		

NOTE: moving cursor is only possible with cursor function menu displayed.

(5). To gain measurement value:

Display Cursor 1 (time cursor centered around the midpoint of screen;

Voltage cursor centered around channel ground level)

Display Cursor 2 (same as above)

Display horizontal space between cursor 1 and 2 $(\triangle X)$: Time between cursors Display (1/ $\triangle X$), units in Hz, kHz, MHz, GHz

Display vertical space between cursor 1 and 2 $\left(\bigtriangleup Y\right)$: Voltage between cursors

NOTE: the values will be automatically displayed on the right upper corner of screen when the cursor function menu is hidden or displaying other menus.

Key Points

Voltage Cursors: Voltage cursors appear as horizontal lines on the display and measure the vertical parameters.

Time Cursors: Time cursors appear as vertical lines on the display and measure the horizontal parameters.

2. Track Mode

Figure 2-59	Table 2-4	10		
CURSOR	Menu	Settings	Com	ments
Mode Track Cursor A CH1 Cursor B CH2 228.6ms 18.86mV 488.0ms 2.049MHz	Mode	Track	Set Track n measurement	node in cursor
	Cursor A	CH1 CH2 None	Set Cursor A ir CH1, CH2 or tur	n conjunction with n off Cursor A
	Cursor B	CH1 CH2 None	Set Cursor B in conjunction with CH1, CH2 or turn off Cursor B	
	Coordinate	Cur-Ax Cur-Ay	Display X or Y axis values of Cursor A	You can switch the value display between Cursor A or B by pressing the key beside this menu
		Cur-Bx Cur-By	Display X or Y axis values of Cursor B	
	Increment	∆X 1/∆X	Display the X-axis increment and its reciprocal between the cursors	You can switch the value display between △ X or △ Y bypressing the key beside this menu
		∆Y	Display the Y-axis increment between the cursors	

In cursor track mode, the cursors move together with the selected waveform.

To do Track mode Cursor Measurements, follow these steps:

- (1). Select the **Track** mode for cursor measurement by pressing soft button as: CURSOR→**Mode**→**Track**.
- (2). Select channel **Source** for Cursor A and Cursor B by pressing soft button as: CURSOR \rightarrow Cursor A or Cursor B \rightarrow CH1, CH2 or None.
- (3). Move the cursors to adjust the horizontal positions of the cursors: (Details in the following Table)

Table 2-41

Cursor	Operation
Cursor A	Turn the vertical POSITION knob to move Cursor A horizontally
Cursor B	Turn the horizontal POSITION knob to move Cursor B horizontally

NOTE: horizontally moving cursor is only possible with cursor track menu displayed.

(4) To gain measurement value:

Display Cursor 1 (time cursor centered around the midpoint of screen; Voltage cursor centered around channel ground level) Display Cursor 2 (same as above) Display horizontal space between cursor 1 and 2 $\triangle X$) : Time between cursors Display (1/ $\triangle X$), units in Hz, kHz, MHz, GHz Display vertical space between cursor 1 and 2 ($\triangle Y$) : Voltage between cursors

NOTE: the values will be automatically displayed on the right upper corner of screen when the cursor function menu is hidden or displaying other menus.

3. Auto mode:

Figure 2-61: Auto Measure Mode of Cursor Measurement

There will be no cursor display if no parameter were chosen in MEASURE menu. This oscilloscope could move cursor automatically to measure 20 parameters in MEASURE menu.

How to use instant execute buttons

The action buttons include AUTO (auto setting) and RUN/STOP .

Auto:

The AUTO features automatic adjustments to produce a usable display of the input signal. When AUTO button is pressed, the following menu will appear.

	Menu	Settings	Comments
Multi-cycle	JUUU		Press to display multi- cycle waveform on
	Multi-cycle		the screen
Single-cycle			Press to display single cycle waveform on
	Single-cycle		the screen
			Press to display the waveform's rising edge
Eall Time	Rise edge		and measure its rise time automatically
			Press to display the waveform's falling edge
10	Fall edge		and measure its fall time automatically
	2		Press to cancel all the Auto Set actions, the
	(Cancel)		oscilloscope will recover to its previous
			status

Table2-62 Table 2-43

Auto-set functions

After the AUTO is pressed the oscilloscope is configured to the following defaults:

Table 2-44

Menu	Settings
Display format	Y-T
Sampling mode	Equal-time
Acquire mode	Normal
Vertical coupling	Adjust to AC or DC according to the signal.
Vertical "V/div"	Adjusted
Volts/Div	Coarse
Bandwidth limit	Full
Signal Invert	OFF
Horizontal position	Center
Horizontal "S/div"	Adjust to right position
Trigger type	Edge
Trigger source	Measure the channel with input signal automatically.
Trigger coupling	DC
Trigger voltage	Midpoint setting
Trigger mode	Auto
⊲POS⊳knob	Trigger offset

RUN/STOP:

Run or Stop waveform acquiring.

NOTE: In STOP status, the volts/div and horizontal time base can be adjusted in a fixed limit. That is, to zoom in/out the signal in vertical and horizontal directions. When the horizontal s/div is 50ms/div or faster, the horizontal time base can be expand 5 div up or down.

Chapter 3 : Application & Examples

Example 1: Taking Simple Measurements

To see a signal in a circuit, but the amplitude and frequency are unknown. You want to quickly display the signal and measure the frequency, period, and peak-to-peak amplitude.

To quickly display a signal, do these steps as follow:

- 1. Set the probe and the channel attenuations to 10X
- 2. Connect signal to CH1 with the probe
- 3. Press the AUTO button

The oscilloscope sets the vertical, horizontal, and trigger controls automatically. To optimize the display of the waveform, you could adjust these controls manually.

Selecting Automatic Measurements

The oscilloscope could take automatic measurements on most signals. To measure the frequency and peak-to-peak amplitude, do these steps as follow:

- Measure peak-to-peak amplitude
 Press MEASURE → Source → CH1 to set measurement source
 Press Voltage → Voltage1/3 to select measurement page
 Press Vpp to select peak-to-peak measurements and the result will be displayed on the screen.
 Measure fragments
 Measure fragments
- Measure frequency
 Press Time → Time1/3 to select measurement page
 Press Freq to select frequency measurements
- Measure period
 Press Time → Time1/3 to select measurement page
 Press Period to select period measurements

NOTE: The frequency, period, and peak-to-peak measurements are shown on the screen and are updated periodically.

Copyright 2004 Rigol Electronic

Example 2: View a signal delay caused by a circuit

This example is to test the input and output signals of a circuit and observe the signal delay. First, set the probe and the channel attenuation to 10X and connect CH1 probe to the input, CH2 to the output of the circuit.

Do these steps as follow:

- 1. Display the signals (CH1 and CH2):
- 1) Pressing the AUTO button
- 2) Adjust the vertical and the horizontal scale by turning the SCALE knobs to appropriate ranges for display.
- 3) Press the CH1 button to select CH1, and turn the vertical POSITION knob to adjust the vertical position of CH1's waveform.
- 4) Press the CH2 button to select CH2, and turn the vertical POSITION knob to adjust the vertical position of CH2's waveform.
- 2. Measure the delay time when a signal going through the circuit

Auto-measuring the delay:

Press MEASURE \rightarrow Source \rightarrow CH1 to set measurement source

Press Time to select measurement Type

Press Time3/3 to select measurement page.

Press $Delay1 \rightarrow 2 =$ to display the result on the screen.

Figure 3-1: Delay of the signals

Copyright 2004 Rigol Electronic

Example 3: Capture a Single-Shot Signal

To capture a single event, you need to gather some pre-test knowledge of the signal in order to correctly set up the trigger level and slope. For example, if the event is derived from TTL logic, a trigger level of 2 volts should work on a rising edge.

The following steps show you how to use the oscilloscope to capture a single event.

- 1. Connect a signal to the oscilloscope.
- 2. Set up the trigger.
- Press the MENU button in the Trigger control area to display the menu.
- Press Edge to select trigger mode
- Press Slope to select Rising
- Press Source to select CH1
- Press Mode to select Single
- Press Coupling to select **DC**
- Turn the vertical and horizontal SCALE knobs to adjust the Volts/Div and the Time base in a proper range for the signal
- Turn the LEVEL knob to adjust trigger level
- 3. Press RUN/STOP button to start capturing

When the trigger conditions are met, data appears on the display representing the data points that the oscilloscope obtained with one acquisition. Press the $\boxed{\text{RUN/STOP}}$ button again rearms the trigger circuit and erases the display.

Example 4: To reduce the random noise on a signal

If the signal applied to the oscilloscope is noisy (Figure 3-2), you can set up the oscilloscope to reduce the noise on the waveform. First, stabilize the displayed waveform by removing the noise from the trigger path. Second, reduce the noise on the displayed waveform.

Figure 3-2

- 1. Connect a signal to the oscilloscope and obtain a stable display.
- 2. Remove the noise from the trigger path by turning on **HF Reject**.

HF Reject (High frequency reject) adds a low pass filter with the 3 dB point at 150 kHz. Use **HF reject** to remove high frequency noise such as AM or FM broadcast stations from the trigger path.

LF Reject (Low frequency reject) adds a high pass filter with the 3 dB point at 8 kHz. Use **LF Reject** to remove low frequency signals such as power line noise from the trigger path.

3. Use averaging to reduce noise on the displayed waveform.

To use average follow these steps.

- Press soft button as ACQUIRE → Acquisition → Average
- Toggle the Averages soft button to select the number of averages that best eliminates the noise from the displayed waveform. The higher the number of averages is, the more noise that is removed from the display. However, the higher number of averages, the slower the displayed waveform responds to waveform changes. You need to choose between how quickly the waveform responds to changes and how much noise there is on the signal. (See Figure 3-3)

Figure 3-3

Example 5: Making Cursor Measurements

There are 20 most desired parameters that could be automatically measured with the oscilloscope. These parameters can also be measured using cursors. You could use the cursors to quickly make time and voltage measurements on a waveform.

Measuring Ring Frequency

To measure the ring frequency at the rising edge of a signal, do these steps:

- 1. Press CURSOR key to see the Cursor menu.
- 2. Press Mode to set Manual mode.
- 3. Press Type to select **Time** measurement
- 4. Rotate vertical **POSITION** knob to place cursor A on the first peak of the ring.

5. Rotate horizontal POSITION knob to place cursor B on the second peak of the ring.

You can see the delta time and frequency (the measured ring frequency) in the Cursor menu.

Figure 3-4

Measuring Ring Amplitude

Now let's measure the amplitude of the ringing. To measure the amplitude, do these steps:

- 1. Press CURSOR key to see the Cursor menu.
- 2. Press Mode to set Manual mode
- 3. Press Type to select **Voltage**.

4. Rotate vertical **POSITION** knob to place cursor A on the top of the first positive peak of the ring.

5. Rotate horizontal **POSITION** knob to place cursor B on the bottom of the first negative peak of the ring.

You can see the following measurements in the cursor menu: (See Figure 3-5)

- The delta voltage (peak-to-peak voltage of the ringing)
- The voltage at Cursor 1
- The voltage at Cursor 2

Figure 3-5

Example 6: The application of the X-Y operation

Viewing Phase Changes through a Network

Connect the oscilloscope to monitor the input and output of the circuit and capture the phase changes through the circuit.

To view the input and output of the circuit in an x-y display, do these steps:

- 1. Set the probe menu attenuation to 10X. Set the switch to 10X on the probes.
- 2. Connect the channel 1 probe to the input of the network, and connect the channel 2 probe to the output.
- 3. If the channels are not displayed, press the CH1 and CH2 buttons.
- 4. Press the AUTO button
- 5. Adjust the vertical SCALE knob to display approximately the same amplitude signals on each channel
- 6. Press the MENU in horizontal control area to display the menu
- 7. Press the Time Base soft button to select X-Y

The oscilloscope displays a Lissajous pattern representing the input and output characteristics of the circuit

- 8. Adjust the vertical SCALE and POSITION knobs to display a desirable waveform.
- 9. Apply the Ellipse method to observe the phase difference between the two channels.

(See Figure 3-6)

Sin θ **=A**/**B** or **C**/**D** where θ = phase shift (in degrees) between the two signals. From the formula above, you could get

$\theta = \pm \text{ arcsine (A/B) or } \pm \text{ arcsine (C/D)}$

If the main axis of the ellipse is at I and III quadrant, θ must be in the range of (0~ π /2) or (3 π /2~2 π). If the main axis is at I and III quadrant, θ must be in the range of (π /2~ π) or (π ~3 π /2).

Example 7: Triggering on a Video Signal

Test a video circuit and display the video signal. Use video trigger to obtain a stable display.

Triggering on Video Fields

To trigger on the video fields, do these steps:

- 1. Press the MENU key in the Trigger control area to see the Trigger menu.
- 2. Press Mode to select Video mode
- 3. Press Source to select CH1 as trigger source
- 4. Press Polarity to select ∐
- 5. Press Sync as Odd Field or Even Field
- 6. Turn the horizontal SCALE knob to see a complete waveform on the screen.

Figure 3-7

Triggering on the Video Lines

- 1. Press the MENU key in the triggering control area to see the trigger menu.
- 2. Press Mode to select Video mode
- 3. Press Source to select **CH1** as trigger source
- 4. Press Polarity to select ∐
- 5. Press Sync to select Line Num
- 6. Turn LEVEL to trigger on a specified line number
- 7. Turn the horizontal SCALE knob to see a complete waveform on the screen

Figure 3-8

Example 8: FFT Cursor measurement

FFT measurements include: amplitude measurement (Vrms or dBVrms) and Frequency measurement (Hz).

Do these steps as follow:

- 1. Press CURSOR key to display menu
- 2. Press Type to select Time or Voltage
- 3. Press Source to select FFT

Copyright 2004 Rigol Electronic

Example 9: Pass/Fail Test

The Pass/Fail Test is one of enhanced special functions of DS5000 series. When running test function the oscilloscope automatically examines the input signal, Compare to the already built waveform mask. If the waveform "touches" the mask, a "Fail" is occur, otherwise the test Pass. If oscilloscope has built in Pass/Fail output module, it could output fail pulse signals (open collector output).

Do the steps as following:

- 1. Press UTILITY key to show the UTILITY menu.
- 2. Press Enable Test and select ON to open the test.
- 3. Press Load to recall the saved mask or press X Mask and Y Mask to adjust the horizontal limit and vertical limit then press Create Mask to create a new mask.
- 4. Press Output to select the expected outputting waveforms.
 - TO
 Fail
 0 wifs
 PASS/FAIL

 Pass = 100 wifs
 I
 Enable Test

 Total = 100 wifs
 ON
 Source

 CH1
 Operate
 I

 MSG Display
 ON

 1/3
 I/3
- 5. Press Operate to start the test.

Figure 3-11: Running Pass/Fail Test

Chapter 4 : Prompt messages & troubleshooting

Prompting messages

Dot display only: Prompts that you could only use Dots type for display under this setting.

Function not available: Prompts that this function is not available under current setting.

Measurement already selected: Prompts that the measurement parameter you pressed is already displayed on screen.

Memory position at limit: Prompts that the Memo Offset is at the full range of the memory.

No active cursor: Prompts that you haven't set the cursor source while using the Track cursor measurements.

No signal found: Prompts that there is no signal connected to the instrument, or the signal is out of the AUTO range for detecting while pressing the AUTO button.

No zoom at this Time/Div: Prompts that under some time bases or X-Y mode, the Delayed Scan function is not available.

Position at limit: Prompts that the channel offset is at limit while turning the vertical POSITION knob to adjust the vertical position of the channel.

Real Time Div at limit: Prompts that the time base is up to the highest horizontal resolution under the Real-Time sampling mode.

Sampling at limit: Prompts that the sampling rate is at limit under the X-Y mode.

Save finished: Prompts that the storage progress finished.

Time/Div at limit: Prompts that the Time/Div is at limit while turning the horizontal SCALE knob to adjust time base.

The storage is empty: Prompts that current position of the memory is empty for waveforms or settings saved.

Copyright 2004 Rigol Electronic

Trigger level at limit: Prompts that the trigger level is at limit while turning the LEVEL knob.

Trigger position at limit: Prompts that the trigger position is at the start or the end point of the memory while turning the horizontal **POSITION** knob to adjust the trigger offset.

Volts/Div at limit: Prompts that the Volts/Div is at full range while turning the vertical SCALE knob.

Delay scale at limit: Prompts that it is at the full range of horizontal resolution under the Delayed Scan mode while turning the horizontal SCALE knob.

Delay position at limit: Prompts that the horizontal position of the zoom window is at limit under the Delayed Scan mode while turning the horizontal **POSITION** knob.

Copyright 2004 Rigol Electronic
Troubleshooting

1. After the oscilloscope is powered on, the screen remains dark, please inspect the instrument following this steps:

- (1) Check the power cable's connection
- (2) Ensure the power switch is turned on
- (3) After the inspections above, restart the oscilloscope
- (4) If the problem still remains, please contact RIGOL for help

2. After the signal acquisition the waveform does not appear, please check according to the following steps:

- (1) Check the probes connected with the signals
- (2) Check the probes connected to the channels firmly
- (3) Check the circuit generates signal on the test point
- (4) Repeat the acquisition

3. The measurement result is **10** times higher or lower than the value expected.

Check if the probe attenuation is the same as the channel attenuation.

4. If the oscilloscope does not get a stable waveform display, please check according to the following steps:

- (1) Check the Trigger Source and notice if it is set to the channel you use
- (2) Check the **Trigger Type**. You should use "Edge" for normal signals, and use "Video" for VIDEO signals.

5. After pressing the RUN/STOP button, the oscilloscope does not display a waveform on screen.

Check whether the **Trigger Mode** is set to "Normal" or "Single" and the trigger level is out of the signal range or not.

If yes, you should set the trigger level in proper range by turning the LEVEL knob or pressing the 50% button. You could also set the Trigger Mode as "AUTO". Moreover, you could push AUTO button to display the waveform on screen.

6. After the Acquisition is set to "Averages" or Display Persistence is set ON, the waveform refreshes slowly.

It is normal in these settings.

7. The signal is displayed as ladder like waveform.

The time base maybe is too slow. You should turn the horizontal SCALE knob to increase horizontal resolution to improve the display.

Maybe the display **Type** is set to "Vectors". You could set it to "Dots" mode to improve the display.

Chapter 5 : Support & Service

Warranty

RIGOL warrants that the products that it manufactures and sells will be free from defects in materials and workmanship for a period of three (3) years from the date of shipment from an authorized RIGOL distributor. If a product or LCD proves defective within the respective period, RIGOL will provide repair or replacement as described in the complete warranty statement.

To arrange for service or obtain a copy of the complete warranty statement, please contact your nearest RIGOL sales and service office.

Chapter 6 : Reference

Appendix A: Specifications

All specifications apply to the DS5000- Series Digital Oscilloscopes and a probe with the Attenuation switch set to 10X unless noted otherwise. To meet these specifications, two conditions must first be met:

- The instrument must have been operating continuously for twenty minutes within the specified operating temperature.
- You must perform the Self Cal operation, accessible through the Utility menu, if the operating temperature changes by more than 5 ° C.

All specifications are guaranteed unless noted "typical".

Acquisition		
Sampling Modes	Real-Time	Equivalent
Sampling Rate	1GSa/s (DS5000CA/DS5000MA)	50GS/s
	250MSa/s (DS5000C/DS5000M)	
Averages	N time acquisitions, all channels	simultaneously, N is
	selectable from 2, 4, 8, 16, 32, 64,	128 and 256

Probe	1X position	10X position
Bandwidth	DC to 6 MHz	DC to full bandwidth
Attenuation ratio	1:1	10:1
Compensation Range	10pf-35pf Oscilloscope v	vith $1M \Omega$ input
Input resistance	1M Ω ±2%	10M Ω ±2%
Input capacitance	85pf-115pf	14.5pf-17.5pf
Input voltage	150V RMS CAT I or 150V DC CAT I 150V RMS CAT II or 150V DC CAT II 100V RMS CAT III or 100V DC CAT III	300V RMS CAT I or 300V DC CAT I 300V RMS CAT II or 300V DC CAT II 100V RMS CAT III or 100V DC CAT III

• The probe index of different models is following its attached specification.

Inputs	
Input Coupling	AC, DC, GND
Input Impedance, DC Coupling	$1M \Omega \pm 2\%$, in parallel with $13pF\pm 2pF$
	$50\Omega\pm2\%$, see the following table for
	availability
Probe Attenuation Factors	1X, 10X, 100X, 1000X
Maximum input voltage	400V (DC+AC Peak, $1M\Omega$, $10X$)
	5V (Vrms, 50Ω, BNC)
Time delay between channel	150ps
(typical)	

50 Ω			Models		
Provided	DC5202CA, DS	55152CA, DS	5152C, DS515	2MA, DS5152	2M
Not provided	DS5102CA, DS5102C, DS5062CA, DS5062C				
	DS5102MA,	DS5102M,	DS5062MA,	DS5062M,	DS5042M,
	DS5022M				

Horizontal	
Sample Rate	10S/s-1GS/s (Real-Time), 50GS/s (Equivalent) (DS5000CA/MA)
Range	10S/s-250MS/s (Real-time) , 50GS/s (Equivalent) (DS5000C/M)
Waveform	(Sin x)/x
Interpolation	
Record Length	4K samples for each channel
Sec/div Range	1ns/div-50s/div* in 1-2-5 steps
	Delayed Scan to 10ps/div*
Sample Rate and	± 100 ppm over any ≥ 1 ms time interval
Delay Time	
Accuracy	
Delta Time	Single-shot: ±(1 sample interval+100ppm×reading+0.6 ns)
Measurement	>16 averages: ±(1sample interval+100ppm×reading+0.4 ns)
Accuracy	
(Full Bandwidth)	

* This characteristics varies by different models

Vertical	
A/D converter	8-bit resolution, each channel samples simultaneously*
Volts/div Range	2mV/div-5V/div at input BNC
Offset Range	±40V(200mV-5V), ±2V(2mV-100mV)
Analog Bandwidth	200MHz(DS5202CA)
	150MHz(DS5152CA/DS5152MA/DS5152C/DS5152M)
	100MHz(DS5102CA/DS5102MA/DS5102C/DS5102M)
	60MHz(DS5062CA/DS5062MA/DS5062C/DS5062M)
	40MHz(DS5042M),
	25MHz(DS5022M)
Single-shot	Full bandwidth (DS5000CA/MA), 50MHz (DS5000C/M)
Bandwidth	
Selectable Analog	20MHz (DS5022M no Bandwidth Limit)
Bandwidth Limit	
Lower Frequency	SHZ (at input BIVC)
LIMIL (AC -30B)	
typical	<1.8ns, <2.3ns, <3.5ns, <5.8ns, <8./ns, <14ns
typical	correspondingly at bandwidth of
	(200M) (150M) (100M) (60M) (40M) (25M)
DC Gain Accuracy	2mV/div-5mV/div, ±4% (Sample or Average acquisition
	mode)
	10mV/div-5V/div, ±3% (Sample or Average acquisition
	mode)
DC Measurement	Average of \geq 16 Waveforms with vertical position at zero:
Accuracy, Average	±(4%×reading+0.1div+1mV) at 2mV/div or 5mV/div
Acquisition Mode	±(3%×reading+0.1div+1mV) at settings 10mV/div
	Average of \geq 16 Waveforms with vertical position not at zero:
	$\pm [3\% \times (reading vertical position) + (1\% of vertical)$
	position)+0.2div]
	Add 2mV for settings from 2mV/div to 200 mV/div
	Add 50mV for settings from 500mV/div to 5V/div
Delta Volts	Delta volts between any two averages of ≥ 16
	wavelorms acquired under same setup and amplent
Accuracy (Average	continuous: $\pm(3\% \times \text{reading} + 0.05 \text{ arV})$
Acquisition Mode)	

* When Sampling rate is at 1GS/s, only one channel is available for use.

Trigger			
Trigger Consitivity		CU1	
(Edge Trigger Sensitivity,	$EVT_{1} = 100 \text{m} V(DC_{1} = 10 \text{m} V(10 \text{m} \text{m} \text{m} \text{m} \text{m} \text{m} \text{m} \text{m}$		L, CH2; IUV(DC~10MH2) L, CH2; IUV(DC~10MH2)
(Eage Trigger Type)		EXI	$: 100 \text{mV}(\text{DC} \sim 10 \text{MH}), 200 \text{mV}(10 \text{MHz} \sim \text{Full})$
		EXI	/5: 500mV(DC ~ 10MHz), 1V(10MHz ~ Full)
	AC	Sam	ne as DC at 50Hz and above
	LF REJ	Sam	ne as the DC- coupled limits for frequencies
		abo	ve 100 kHz, attenuates signals below 8kHz.
	HF REJ	Sam	ne as the DC- coupled limit from DC to 10
		kHz	, attenuates signals above 150 kHz
Trigger Level Range	Internal	±12	2 divisions from center of screen
	EXT	±1.	6V
	EXT/5	±8\	1
Trigger Level	Internal	±(0	.3div×Volts/div) (±4 divisions from center of
Accuracy, (typical)		scre	een)
	EXT	±(6	% of setting + 40 mV)
	EXT/5	±(6	% of setting + 200 mV)
Trigger offset	Pretriger14div, delay trigger 1s		
Trigger Holdoff range	100ns-1.5s		
Set Level to 50%,	Operates with input signals \geq 50 Hz		
(Typical)			
Default Settings,	Trigger mode is Auto and Coupling is AC		
Video Trigger	55-		
Sensitivity,	Internal		Pk-pk amplitude of 2 divisions
(Video Trigger Type,	EXT		400mV
typical)	EXT/5		2V
Signal Formats and	Supports NTSC, PAL, and SECAM broadcast systems for any field		
Field Rates Video	or any line		
Trigger Type			
Pulse trigger:			
Pulse Trigger mode	(> < -) +	-widt	h ($\geq \leq =$)-width
Dules width range	$(\geq_1 \leq_j - j + w u u u) (\geq_j \leq_j - j - w u u u)$		
Pulse width range	ZUNS-IUS		

Measurement	S		
Cursors	Manual	Voltage difference between cursors (ΔV)	
Measure		Time difference between cursors (ΔT)	
		Reciprocal of ΔT in Hertz (1/ ΔT)	
	Track Voltage value for Y-axis waveform		
		Time value for Y-axis waveform	
	Auto	Cursors are visible for Automatic Measurement	
	Measure		
Auto Measure	Vpp, Vamp, V	Vmax, Vmin, Vtop, Vbase, Vavg, Vrms, Overshoot,	
	Preshoot, Freq, Period, Rise Time, Fall Time, +Width, -Width, +Duty,		
	-Duty, Delay1→2 +, Delay1->2f		

General Specifications

Display	
Display Type	5.7 in. (145 mm) diagonal Liquid Crystal Display
Display Resolution	320 horizontal by 240 vertical pixels
Display Color	VGA color, 256 (DS5000CA、DS5000C)
	Mono color (DS5000MA、DS5000M)
Display Contrast	Adjustable
Backlight Intensity, typical	60 lux/m ²

Probe Compensator Output		
Output Voltage, typical	3 Vp-p into $\ge 1 M \Omega$ load	
Frequency, typical	1KHz	

Power

FOWEI	
Source Voltage	100 ~ 240 VAC _{RMS} , 50Hz, CATII
Power Consumption	Less than 50VA
Fuse	2 A, T rating, 250 V

Power Cable

IEC60245/IEC60227 (250V, 10A)

Environmental

Environmental		
Temperature	Operating 10℃~ 40℃	
	Nonoperating -20℃~ +60℃	
Cooling Method	Fan force air	
Humidity	+40 $^\circ C$ or below: \leqslant 90% relative humidity	
	+40 °C ~ +50 °C : \leq 60% relative humidity	
Altitude	Operating 3,000 m	
	Nonoperating 15,000 m	

Mechanical		
Dimensions	Height	288 mm
	Width	350 mm
	Depth	145 mm
Weight	Without package	4.5 kg
(approximate)	Packaged	5.6 kg

IP Degree

IP2X

Adjustment Interval

The recommended calibration interval is one year

Appendix B: DS5000-Series Accessories

Standard Accessories:

• Probe×2 (1.5m), 1:1, (10:1) Passive Probes

The passive probes have a 6MHz bandwidth with a rating of 150V CAT II when the switch is in the 1X position, and a Full oscilloscope bandwidth with a rating of 300 V CAT II when the switch is in the 10X position.

- Power Cable that fits the standard of destination country.
- User Manual
- User Registration Form

Optional Accessories:

• EM5-CM integration

Communication module: RS232, GPIB, Pass/Fail output

- EM5-COM communication module: RS232, GPIB
- EM5-P/F Pass/Fail output module
- UltraScope for WIN98/ 2000/XP software
- Accessories case: PA-5000

All accessories (standard and optional) are available by contacting your local RIGOL office.

Appendix C: General Care and Cleaning

General Care

Do not store or leave the instrument in where the LCD display will be exposed to direct sunlight for long periods of time.

CAUTION: To avoid damage to the instrument or probes, do not expose them to sprays, liquids, or solvents.

Cleaning

If this instrument requires cleaning, disconnect it from all power sources and clean it with a mild detergent and water. Make sure the instrument is completely dry before reconnecting it to a power source.

To clean the exterior surface, perform the following steps:

1. Remove loose dust on the outside of the instrument and probes with a lint- free cloth. Take care to avoid scratching the clear plastic display filter.

2. Use a soft cloth dampened with water to clean the instrument.

NOTICE: To avoid damage to the surface of the instrument or probes, do not use any abrasive or chemical cleaning agents.

Index

Number	
50%1-15,	2-25
A	
AC Coupling	2-3
AC Line	2-30
AccessoriesV	', 6-6
ACQUIRE	2-33
Acquisition	6-1
AUTO 1-9, 2-64,	2-65
Auto Calibration	2-43
Auto Trigger	2-31
Automatic Measurement	2-51
Average Acquisition	2-36
В	
Bandwidth Limit	2-5
Blackman Window	2-13
C	
Channel Coupling	2-3
Cleaning	6-7
CURSOR	2-58
Cursor Measurements 2-58	, 3-6
D	
DC Coupling	2-3
Display	6-5
Display System	2-37
Edge Trigger	2-26
E	
Envelope	2-36
Equivalent sampling	2-36
Ext and Ext/5	2-30
F	
Factory Setup	2-40
FFT	2-12
FORCE 1-15,	2-25
Front panel	1-2
Functional check	1-6

1 °

U	
GND Coulping 2	-4
Н	
Hamming Window2-	13
Hanning Window2-	13
HF Reject2-3	31
Horizontal6	-2
Horizontal Knobs2-	18
Horizontal Menu2-	18
Horizontal System 1-12, 2-2	18
Ι	
I/O setup2-4	42
Inputs6	-2
Instant Execute Key2-	64
Invert a waveform 2	-9
К	
Keyboard Test2-4	48
L	
Language2-	50
LEVEL	11
LF Reject2-2	31
М	
Math2-	11
MEASURE2-	51
Measurements 6	-4
Ν	
Normal Trigger2-:	31
Nyquist Frequency2-	13
0	
OFF2-	16
Options	. V
Р	
Power 6	-5
Pretrigger2-3	32
Probe 6	-1
Probe Attenuation 2	-6

Probe compensation	1-8
Probe Compensator	6-5
Prompting messages	4-1
R	
Random Noise	3-4
Realtime Sampling	2-36
Rectangle Window	2-13
REF	2-14
Reference	6-1
Roll mode	2-35
Roll Mode Display	2-20
RUN/STOP2	2-64, 2-65
RUN/STOP2 S	2-64, 2-65
RUN/STOP2 S Sampling System	2-64, 2-65 2-33
RUN/STOP2 S Sampling System Save	2-64, 2-65 2-33 2-40
RUN/STOP2 S Sampling System Save Save and Recall	2-64, 2-65 2-33 2-40 2-39
RUN/STOP2 S Sampling System Save Save and Recall Screen Test	2-64, 2-65 2-33 2-40 2-39 2-48
RUN/STOP2 S Sampling System Save Save and Recall Screen Test Self-test	2-64, 2-65 2-33 2-40 2-39 2-48 2-48
RUN/STOP2 S Sampling System2 Save Save and Recall Screen Test Self-test Single Trigger	2-64, 2-65 2-33 2-40 2-39 2-48 2-48 2-31
RUN/STOP2 S Sampling System2 Save Save and Recall Screen Test Self-test Single Trigger STORAGE	2-64, 2-65 2-33 2-40 2-39 2-48 2-48 2-31 2-39
RUN/STOP2 S Sampling System2 Save Save and Recall Screen Test Self-test Single Trigger STORAGE Sync Pulses	2-64, 2-65 2-33 2-40 2-39 2-48 2-48 2-31 2-39 2-27

Т

-
Trig Offset 1-13
Trigger 6-4
Trigger Control 1-14
Trigger System 2-25
Troubleshooting 4-3
U
UltraZoom 1-12, 2-8
UTILITY 2-41
V
Vernier 1-11, 2-8
Vertical6-3
Vertical POSITION Knob 2-17
Vertical SCALE Knob 2-17
Vertical System 2-2
Vertical Window 1-10
Video Signal 3-10
Video Trigger 2-27
Х
X-Y2-20, 2-23, 3-8
Υ
Y-T 2-20